8 research outputs found

    Analyzing the Factors Contributing to the Establishment of Thailand as a Hub for Regional Operating Headquarters

    Get PDF
    In June 2010, the Thai government proposed improved investment tax incentive schemes to attract more foreign companies to establish Regional Operating Headquarters (ROH) in Thailand. The major theme of incentive packages has historically been the waiving of income tax on ROHs locating in the Kingdom. In the wake of recent political crises, these tax benefits are considered as important measures in reinforcing the Kingdom’s position as an important manufacturing and service hub for the ASEAN region. While investor confidence was wavering because of the unstable political environment that has appertained since 2006, investors are weighing business continuity and safety concerns against the provided and proposed incentives. This paper briefly compares the original ROH tax incentives from 2002 with the new ones, examines the factors contributing to the establishment of Thailand as a hub for ROHs and analyzes the competitiveness of Thailand in comparison with Hong Kong, Singapore and Malaysia in the context of national competitiveness for establishing ROH. National competitiveness is measured by using the Double Diamond-based nine factor model (IPS Model) from the IPS national competitiveness research study

    Objective assessment and feedback generation in dental surgical simulation : a framework based on correlating procedure and outcome

    Get PDF
    Fine motor skill is indispensable for a dentist. As in many other medical fields of study, the traditional surgical master-apprentice model is widely adopted in dental education. Recently, virtual reality (VR) simulators have been employed as supplementary components to the traditional skill-training curriculum, and numerous dental VR systems have been developed academically and commercially. However, the full promise of such systems has yet to be realized due to the lack of sufficient support for formative feedback. Without such a mechanism, evaluation still demands dedicated time of experts in scarce supply. With the aim to fill the gap of formative assessment using VR simulators in skill training in dentistry, this thesis presents a framework to objectively assess the surgical skill and generate formative feedback automatically. VR simulators enable collecting detailed data on relevant metrics throughout a procedure. Our approach to formative feedback is to correlate procedure metrics with the procedure outcome in order to identify the portions of a procedure that need to be improved. Prior to the correlation, the procedure outcome needs to be evaluated. The scoring algorithm designed in this thesis provides an overall score and identifies specific errors and their severity. Building upon this, we developed techniques to identify the portion of the procedure responsible for the errors. Specifically, for the errors in the outcome the responsible portions of the procedure are identified based on correlation of location of the error. For some types of feedback one mode may be more suitable than another. Tutoring formative feedback are provided using the video- and haptic- modalities. The effectiveness of the feedback systems have been evaluated with the dental students with randomized controlled trials and the findings show the feedback mechanisms to be effective and have potentials to use as valuable supplemental training resources

    The effect of 3D stereopsis and hand-tool alignment on learning effectiveness and skill transfer of a VR-based simulator for dental training

    Full text link
    Dental simulators gained prevalence in recent years. Important aspects distinguishing VR hardware configurations are 3D stereoscopic rendering and visual alignment of the user's hands with the virtual tools. New dental simulators are often evaluated without analysing the impact of these simulation aspects. In this paper, we seek to determine the impact of 3D stereoscopic rendering and of hand-tool alignment on the teaching effectiveness and skill assessment accuracy of a VR dental simulator. We developed a bimanual simulator using an HMD and two haptic devices that provides an immersive environment with both 3D stereoscopic rendering and hand-tool alignment. We then independently controlled for each of the two aspects of the simulation. We trained four groups of students in root canal access opening using the simulator and measured the virtual and real learning gains. We quantified the real learning gains by pre- and post-testing using realistic plastic teeth and the virtual learning gains by scoring the training outcomes inside the simulator. We developed a scoring metric to automatically score the training outcomes that strongly correlates with experts' scoring of those outcomes. We found that hand-tool alignment has a positive impact on virtual and real learning gains, and improves the accuracy of skill assessment. We found that stereoscopic 3D had a negative impact on virtual and real learning gains, however it improves the accuracy of skill assessment. This finding is counter-intuitive, and we found eye-tooth distance to be a confounding variable of stereoscopic 3D, as it was significantly lower for the monoscopic 3D condition and negatively correlates with real learning gain. The results of our study provide valuable information for the future design of dental simulators, as well as simulators for other high-precision psycho-motor tasks.Comment: 26 pages, 15 figures, Accepted at online journal PLoS ON

    Objektive Beurteilung und Feedback-Generierung in der zahnchirurgischen Simulation : ein Rahmen basierend auf korrelierenden Verfahren und Ergebnissen

    No full text
    Fine motor skill is indispensable for a dentist. As in many other medical fields of study, the traditional surgical master-apprentice model is widely adopted in dental education. Recently, virtual reality (VR) simulators have been employed as supplementary components to the traditional skill-training curriculum, and numerous dental VR systems have been developed academically and commercially. However, the full promise of such systems has yet to be realized due to the lack of sufficient support for formative feedback. Without such a mechanism, evaluation still demands dedicated time of experts in scarce supply. With the aim to fill the gap of formative assessment using VR simulators in skill training in dentistry, this thesis presents a framework to objectively assess the surgical skill and generate formative feedback automatically. VR simulators enable collecting detailed data on relevant metrics throughout a procedure. Our approach to formative feedback is to correlate procedure metrics with the procedure outcome in order to identify the portions of a procedure that need to be improved. Prior to the correlation, the procedure outcome needs to be evaluated. The scoring algorithm designed in this thesis provides an overall score and identifies specific errors and their severity. Building upon this, we developed techniques to identify the portion of the procedure responsible for the errors. Specifically, for the errors in the outcome the responsible portions of the procedure are identified based on correlation of location of the error. For some types of feedback one mode may be more suitable than another. Tutoring formative feedback are provided using the video- and haptic- modalities. The effectiveness of the feedback systems have been evaluated with the dental students with randomized controlled trials and the findings show the feedback mechanisms to be effective and have potentials to use as valuable supplemental training resources

    The effect of 3D stereopsis and hand-tool alignment on learning effectiveness and skill transfer of a VR-based simulator for dental training.

    No full text
    Recent years have seen the proliferation of VR-based dental simulators using a wide variety of different VR configurations with varying degrees of realism. Important aspects distinguishing VR hardware configurations are 3D stereoscopic rendering and visual alignment of the user's hands with the virtual tools. New dental simulators are often evaluated without analysing the impact of these simulation aspects. In this paper, we seek to determine the impact of 3D stereoscopic rendering and of hand-tool alignment on the teaching effectiveness and skill assessment accuracy of a VR dental simulator. We developed a bimanual simulator using an HMD and two haptic devices that provides an immersive environment with both 3D stereoscopic rendering and hand-tool alignment. We then independently controlled for each of the two aspects of the simulation. We trained four groups of students in root canal access opening using the simulator and measured the virtual and real learning gains. We quantified the real learning gains by pre- and post-testing using realistic plastic teeth and the virtual learning gains by scoring the training outcomes inside the simulator. We developed a scoring metric to automatically score the training outcomes that strongly correlates with experts' scoring of those outcomes. We found that hand-tool alignment has a positive impact on virtual and real learning gains, and improves the accuracy of skill assessment. We found that stereoscopic 3D had a negative impact on virtual and real learning gains, however it improves the accuracy of skill assessment. This finding is counter-intuitive, and we found eye-tooth distance to be a confounding variable of stereoscopic 3D, as it was significantly lower for the monoscopic 3D condition and negatively correlates with real learning gain. The results of our study provide valuable information for the future design of dental simulators, as well as simulators for other high-precision psycho-motor tasks

    Added-value of mosquito vector breeding sites from street view images in the risk mapping of dengue incidence in Thailand.

    No full text
    Dengue is an emerging vector-borne viral disease across the world. The primary dengue mosquito vectors breed in containers with sufficient water and nutrition. Outdoor containers can be detected from geotagged images using state-of-the-art deep learning methods. In this study, we utilize such container information from street view images in developing a risk mapping model and determine the added value of including container information in predicting dengue risk. We developed seasonal-spatial models in which the target variable dengue incidence was explained using weather and container variable predictors. Linear mixed models with fixed and random effects are employed in our models to account for different characteristics of containers and weather variables. Using data from three provinces of Thailand between 2015 and 2018, the models are developed at the sub-district level resolution to facilitate the development of effective targeted intervention strategies. The performance of the models is evaluated with two baseline models: a classic linear model and a linear mixed model without container information. The performance evaluated with the correlation coefficients, R-squared, and AIC shows the proposed model with the container information outperforms both baseline models in all three provinces. Through sensitivity analysis, we investigate the containers that have a high impact on dengue risk. Our findings indicate that outdoor containers identified from street view images can be a useful data source in building effective dengue risk models and that the resulting models have potential in helping to target container elimination interventions

    Effects of COVID-19 government travel restrictions on mobility in a rural border area of Northern Thailand: A mobile phone tracking study.

    No full text
    BackgroundThailand is among the top five countries with effective COVID-19 transmission control. This study examines how news of presence of COVID-19 in Thailand, as well as varying levels of government restriction on movement, affected human mobility in a rural Thai population along the border with Myanmar.MethodsThis study makes use of mobility data collected using a smartphone app. Between November 2019 and June 2020, four major events concerning information dissemination or government intervention give rise to five time intervals of analysis. Radius of gyration is used to analyze movement in each interval, and movement during government-imposed curfew. Human mobility network visualization is used to identify changes in travel patterns between main geographic locations of activity. Cross-border mobility analysis highlights potential for intervillage and intercountry disease transmission.ResultsInter-village and cross-border movement was common in the pre-COVID-19 period. Radius of gyration and cross-border trips decreased following news of the first imported cases. During the government lockdown period, radius of gyration was reduced by more than 90% and cross-border movement was mostly limited to short-distance trips. Human mobility was nearly back to normal after relaxation of the lockdown.ConclusionsThis study provides insight into the impact of the government lockdown policy on an area with extremely low socio-economic status, poor healthcare resources, and highly active cross-border movement. The lockdown had a great impact on reducing individual mobility, including cross-border movement. The quick return to normal mobility after relaxation of the lockdown implies that close monitoring of disease should be continued to prevent a second wave

    Large scale detailed mapping of dengue vector breeding sites using street view images.

    No full text
    Targeted environmental and ecosystem management remain crucial in control of dengue. However, providing detailed environmental information on a large scale to effectively target dengue control efforts remains a challenge. An important piece of such information is the extent of the presence of potential dengue vector breeding sites, which consist primarily of open containers such as ceramic jars, buckets, old tires, and flowerpots. In this paper we present the design and implementation of a pipeline to detect outdoor open containers which constitute potential dengue vector breeding sites from geotagged images and to create highly detailed container density maps at unprecedented scale. We implement the approach using Google Street View images which have the advantage of broad coverage and of often being two to three years old which allows correlation analyses of container counts against historical data from manual surveys. Containers comprising eight of the most common breeding sites are detected in the images using convolutional neural network transfer learning. Over a test set of images the object recognition algorithm has an accuracy of 0.91 in terms of F-score. Container density counts are generated and displayed on a decision support dashboard. Analyses of the approach are carried out over three provinces in Thailand. The container counts obtained agree well with container counts from available manual surveys. Multi-variate linear regression relating densities of the eight container types to larval survey data shows good prediction of larval index values with an R-squared of 0.674. To delineate conditions under which the container density counts are indicative of larval counts, a number of factors affecting correlation with larval survey data are analyzed. We conclude that creation of container density maps from geotagged images is a promising approach to providing detailed risk maps at large scale
    corecore